
Using Team Automata to Specify Software Architectures

Mehran Sharafi 1, Fereidon Shams Aliee 2, Ali Movaghar 3

1 Faculty of Engineering, Azad Islamic University of Najafabad
2Faculty of Computer Engineering, Shahid Beheshti University, Tehran, Iran

3 Computer Engineering Department, Sharif University of Technology, Tehran 11365, Iran

Mehran_sharafi@iaun.ac.ir, F_shams@sbu.ac.ir,
Movaghar@sharif.edu

Abstract. Using formal methods to specify software architectures make it pos-
sible to form a rigorous foundation to automatically verify different aspects of
software architectures. In this paper we introduce a framework to formally
specify and evaluate software architectures. The framework includes an algo-
rithm to transform software architecture described in UML to a powerful and
formal model, called Team Automata. The framework also proposes a perform-
ance model over the obtained formal descriptions. This model is used to spec-
ify, evaluate and enhance the architecture of a Web-Service software under
flash-crowd condition and the results of analyses and experiments are pre-
sented.

Keywords: Software Architecture, Team Automata, Component Interaction, Perform-
ance.

1 Introduction

Software Architecture (SA in short) in early development phases represents models
which contain basic structural components of software and their interactions; on the
other hand, it contains both static structure and dynamics of the system behavior. De-
spite very high level of abstraction of architectural models, they comprise important
design features which could be used to anticipate functional and non-functional at-
tributes (like performance, security, etc.) of software. In the past several years, many
methods have been proposed to specify and evaluate SA and their primary goal is to
facilitate architectural decision-makings; for example, in order to choose a suitable
architecture among several architectural alternatives, one that best fits functional and
non-functional requirements of relevant software [2, 3, 4, 5].

In this work, we introduce a formal framework to specify and evaluate software ar-
chitectures and try to overcome the usual limitations of common formal models.
Within the framework, we have proposed an algorithm to transform SA behaviors de-
scribed in UML 2.0 to an automata-based model called Team Automata [8]. Along by

A. Gelbukh, S. Suárez, H. Calvo (Eds.)
Advances in Computer Science and Engineering
Research in Computing Science 29, 2007, pp. 149-160

Received 30/08/07
Accepted 19/10/07

Final version 24/10/07

the formal descriptions, we proposed a performance model which is used to evaluate
performance aspects of software architecture. Thus, our framework could be used by
software architects to choose suitable architecture from among many alternatives
and/or help them to make changes to architecture to fit desired performance require-
ments. This paper organized as follows: After Introduction, in Section 2 a comparison
is made between some extended automata-based models, and their capabilities and
weaknesses to specify components interaction. In this section also Team Automata, as
a selected model, has been introduced and some definitions applied in our algorithm
have been explained. Section 3 introduces overall framework. In Section 4,the pro-
posed framework, have been applied on two alternative architectures of a web-service
software as a case study, and the results have been presented. Section 5 refers to con-
clusions and future work.

2 Using Automata-Based Models to Specify SA

As we mentioned before, automata-based models have been used in the literature to
specify dynamics of software architectures. However some of extended automata are
more consistent for this issue because they have been designed for modeling the inter-
action among loosely coupled components in systems. For example, Input/Output
Automata (IOA in short) [9] as a labeled transition system provide an appropriate
model for discrete event systems consisting of concurrently operating components
with different input, output and internal actions. IOA can be composed to form a
higher-level I/O automaton thus forming a hierarchy of components of the system. In-
terface Automata (IA) [10, 11] are another extended automata model suitable for
specifying component-based systems, which also support incremental design. Finally,
Team Automata [8] is a complex model designed for modeling both the conceptual
and architectural level of groupware systems.

The common feature of these automata models is that "actions" are classified in
'inputs', 'outputs' and 'internals', so that internal actions cannot participate in compo-
nents interaction. This feature has made them powerful to specify interaction among
loosely coupled and cooperating components. It is clear that there are many similari-
ties between application domains of the mentioned models and the literature of Soft-
ware Architectures. Thus, applying these models in SA area must be greatly taken
into consideration by software engineers. In [12] we also made a detailed comparison
among these models and described why we have selected Team Automata for our
framework.

2-1. Team Automata

Team Automata model was first introduced in [13] by C.A.Ellis. This complex model
is primarily designed for modeling groupware systems with communicating teams but
can also be used for modeling component-based systems [14]. In this section, some
definitions of TA literature are briefly described. These definitions have been used in
the algorithm proposed in this paper. Readers are referred to [8] for more complete
and detailed definitions.

150 Mehran Sharafi, Fereidon Sham Aliee, Ali Movaghar

Let Ί Ν⊆ be a nonempty, possibly infinite, countable set of indices. Assume that
Ί is given by Ί = {i1, i2 . . .}, with ij < ik if j < k. For a collection of sets Vi , with i ∈
Ί, we denote by ii VΓ∈Π the Cartesian product consisting of the elements (vi1, vi2, . . .)
with vi∈Vi for each i ∈ Ί. If vi∈Vi for each i ∈ Ί, then Γ∈Π i vi denotes the ele-
ment (vi1, vi2, . . .) of ii VΓ∈Π . For each j ∈Ί and (vi1, vi2, . . .)∈ ii VΓ∈Π , we define
projj ((vi1, vi2, . . .)) = vj. If ⊆≠ ζφ Ί, then projζ ((vi1, vi2, . . .)) = jj vζ∈Π .

For the sequel, we let S = {Ci | i∈Ί} with Ί Ν⊆ be a fixed nonempty, indexed set
of component automata, in which each Ci is specified
as ()()i

i
ioutiinpii IQ ,,,,, int,,, δΣΣΣ , with int,,, ioutiinpii ΣΣΣ=Σ ΥΥ as set of ac-

tions and outiinpiexti ,,, ΣΣ=Σ Υ is the set of external actions of Ci. ii Σ=Σ Γ∈Υ is the
set of actions of S; also we have ii QQ Γ∈Π= as the state space of S.

Component automata interact by synchronizing on common actions. Not all auto-
mata sharing an action have to participate in each synchronization on that action. This
leads to the notion of a complete transition space consisting of all possible combina-
tions of identically labeled transitions.

Definition 1. A transition QQqaq ×Σ×∈′),,(is a synchronization on a in S if for

all i∈Ί, (proji(q), a, proji(q′)) iδ∈ or proji(q) = proji(q′), and there exists i∈Ί such
that (proji(q), a, proji(q′)) iδ∈ .

For Σ∈a ,)(SaΔ is the set of all synchronizations on a in S. Finally

)()(SS aa Δ=Δ Σ∈Υ is the set of all synchronizations of S.
Given a set of component automata, different synchronizations can be chosen for

the set of transitions of a composed automaton. Such an automaton has the Cartesian
product of the states of the components as its set of states. To allow hierarchically
constructed systems within the setup of team automata, a composed automaton also
has internal, input, and output actions. It is assumed that internal actions are not ex-
ternally observable and thus not available for synchronizations. This is not imposed
by a restriction on the synchronizations allowed, but rather by the syntactical re-
quirement that each internal action must belong to a unique component: S is compos-
able if

{ }
φ=ΣΣ

Γ∈
j

ij
i ΥΙ

\
int,

 for all i∈Ί.

Moreover, within a team automaton each internal action can be executed from a
global state whenever it can be executed by its component at the current local state.
All this is formalized as follows.

Definition 2. Let S be a composable set of component automata. Then a team

automaton over S is a transition system ()()IQ outinp ,,,,, int δΣΣΣ=Τ , with set of

states ii QQ Γ∈Π= and set of initial states ii II Γ∈Π= , actions ii Σ=Σ Γ∈Υ specified by

int,int ii Σ=Σ Γ∈Υ , outiiout ,Σ=Σ Γ∈Υ , outinpiiinp ΣΣ=Σ Γ∈ \)(,Υ and transitions

QQ ×Σ×⊆δ such that)(SΔ⊆δ and moreover)(Saa Δ=δ for all intΣ∈a .

Using Team Automata to Specify Software Architectures 151

As definition 2 implies, one of the important and useful properties of TA compared
to other models is that there is no unique Team automata composed over a set of
component automata, but a whole range of Team Automata distinguishable only by
their synchronizations can be composed over this set of component automata. This
feature enables Team automata to be architecture and synchronization configurable,
moreover, it makes possible to define a wide variety of protocols for the interaction
among components of a system.

Two other definitions effectively used in our algorithm are ''subteams" and "com-
municational actions" that we briefly introduce. Reference,[8] supports detailed defi-
nitions.

Definition3. A pair Ci,Cj with i,j Γ∈ , of component automata is communicating (in

S) if there exists an ()extjextia ,, ΣΣ∈ Υ such that () ()outiinpjoutjinpia ,,,, ΣΣΣΣ∈ ΙΥΙ .

Such an a is called a communicating action (in S). By comΣ we denote the set of
all communicating actions (in S).

Definition 4. Let ()()iioutinpii IQ Γ∈Γ∈ ΠΣΣΣΠ=Τ ,,,,, int δ be a team automaton

over the composable system S, and let Γ⊆J . Then the subteam of T determined by
J is denoted by ()TSUBJ and is defined as

() ()()jJjJjoutjinpjjJjJ IQTSUB ∈∈ ΠΣΣΣΠ= ,,,,, int,,, δ , where:

int,int, jJjJ Σ=Σ ∈Υ , outjJjoutJ ,, Σ=Σ ∈Υ , outJinpjJjinpJ ,,, \)(ΣΣ=Σ ∈Υ

and for all jJjJa Σ=Σ∈ ∈Υ , () () { }()JjCproj jaaJaJ ∈Δ= Ιδδ]2[.
The transition relation of a subteam of T determined by some Γ⊆J is obtained by

restricting the transition relation of T to synchronizations among the components in
{ }JjC j ∈ . Hence, in each transition of the subteam, at least one of the component
automata is actively involved. This is formalized by the intersection of
() ()aJaJ proj δδ]2[= with { }()JjC ja ∈Δ , for each action a, as in each transition in this
complete transition space, at least one component from { }JjC j ∈ is active.

3 Proposed Framework

In this section, we describe an extension made to UML to become consistent, and
could be used as our input model. Then we introduce an algorithm to transform ex-
tended UML models of software architecture to formal descriptions of Team Auto-
mata. We called this algorithm UML2TA. Finally, a performance model is described
over TA, to evaluate performance aspects of software architecture. Fig.1. shows the
input models and the overall steps of our framework.

152 Mehran Sharafi, Fereidon Sham Aliee, Ali Movaghar

3-1. UML2TA: An algorithm for transforming software architecture to Team
Automata.

UML diagrams are highly understandable and are widely used by software develop-
ers. New versions of UML (UML 2.X) have enhanced notations for specifying com-
ponent-based development and software architectures. [1, 15]

Since our target model-TA, is highly formal, direct translation of UML to TA is
problematic. Therefore, we first provided formal definitions of UML model elements
to create a consistent input model. Static structure of software architecture is de-
scribed with UML 2 Component Diagram, while the interaction among components is
described by Sequence Diagrams. Because of space limitation, we ignore describing
details of the algorithm (UML2TA) and formal descriptions which we added to initial
UML models. Readers are referred to [20] for a complete explanation of our frame-
work. However, in this paper a comprehensive example of applying our framework
on a casestudy will be described.

 Fig. 1. Overall steps in the framework to formally specify and evaluate software ar-
chitecture.

Yes

No

UML
Sequence
Diagrams

UML Component
Diagram

Input: Structural
and behavioral
models of SA.

Performance is
acceptable?

Choose the architecture

Driving initial state model of each Component Automata, based on domain exper-
ti

Completing transition relation of each CA using UML2TA (phase 1)

Creating a subteam for each sequence diagram using UML2TA (phase 2)

Calculating performance of each subteam using the proposed performance model

Update the architecture
or try another one

Using Team Automata to Specify Software Architectures 153

3-2. A Performance Model over TA Specifications

TA model achieved by UML2TA, is a formal foundation for software architecture
which can be used for evaluating several attributes (For example in [6], [7] TA has
been used for security analysis of groupware systems). In this section we introduce a
model to evaluate performance of software architecture described by team automata.
In this way, two features have been considered for evaluating performance:

a) Performance specifications of components communication. In our performance
model, we have considered a delay for each synchronization within a subteam.

b) The granularity of the performance analysis. Performance can be analyzed as ei-
ther behavior-dependent or behavior-independent. For example, performance can be
defined by processing time of the entire component or processing time of each service
invocation in the component. In our model, performance is considered at the service
level. Since service requests to a software component are assumed to be input actions
to corresponding component automata, we assign a processing time to each input ac-
tion (These data are again obtained from existing similar systems). According to sug-
gestions a and b, we can extend Team automata models to include performance in-
formation as follows:

For each Component Automata a processing-time function P and a delay function
P’ is defined as follows:

P= { () inpiara ,, ∑∈ , r is the processing time corresponding to action a}

P′= { () id δθθ ∈, , d is the delay corresponding to transitionθ }

We now model each Component Automata in the architecture with the extension of
performance model as follows:

),),,),,,(,((int,,, iiiiioutiinpiii PPIQCP ′∑∑∑= δ (1)

Delays of transition within a component could be ignored (comparing with com-
munication delay between components, especially for distributed components). If we
assume components interactions synchrony and sequential, then we can consider a
whole subteam as a complex server [19] whose mean service time is equal to summa-
tion of service time of input actions (those which are synchronized) plus all synchro-
nization delay in the subteam. Thus, if

kJi δθ ∈ be the ith synchronization in

()τ
kJSUB and comJk ,Σ be the set of all communicating actions in ()τ

kJSUB

and comJ k
A ,Σ⊆ , { }maaaA ,...,, 21= ,

kJm δ=) be the set of communication ac-

tions which are synchronized within ()τ
kJSUB , then we have:

() ()()∑
=

+′=
m

i
ii

k

aPP
1

1 θ
μ

 (2)

154 Mehran Sharafi, Fereidon Sham Aliee, Ali Movaghar

, Where
kμ

1 is mean service time of scenario k (corresponding to SDk) which has

been modeled by subteam, ()τ
kJSUB .

Now suppose that software has k independent scenario whose probability of

request by users is fk and suppose, λ is the total input rate of requests to the system
(When a request for a scenario arrives while a previous one has not been answered,
the new request will be queued). The system response time corresponding to architec-
ture under evaluation is equal to R=1/(λ-μ); where μ is total service rate and is calcu-
lated by the following formulas:

∑
=

=
k

i i

if
1

1
μμ

 (3)

4 An Application System Example

We evaluated UML2TA method on a part of a web-service software architecture. In
this example, we have a component diagram describing major components and con-
nectors (Fig 2), and a sequence diagram (Fig 3) describing components interaction
corresponding to a scenario where some end user requests the web content available
from /ping URL (This system has been used as a case-study in [17] in a different
scope). We use extension defined in [18] for sequence diagrams.

Fig. 2. Component Diagram of a part of Web-Service Software

Using Team Automata to Specify Software Architectures 155

Fig. 3. Sequence Diagram specifying components interaction for '/ping' Scenario.

According to UML2TA, first, we manually model each software component with a
Component Automata from informal behavioral descriptions which has been briefly
mentioned in Table 1.

Table 1. CA models of Web-service Software components.
Component Automata model of PingHarness Component Automata model of HttpHead-

erHarness
Component Automata model of
HttpTransponderHarness:

Actions:
Input action: proc_ping;
Output action: delivery;
Internal action: None;

State Variables:
Generate_response:{0,1};

Transitions (per actions):

Proc_ping:
 Effects: generate_response = 1;

delivery:
Preconditions: generate_response = 1;
 Effects: generate_response = 0;

Actions:

Input actions: header_inspect;
Output actions: proc_ping;
Internal action: none;

State Variables:
Identify_request_type : {0,1};

Transitions: (per actions)

header_inspect:
 Effects: Identify_request_type := 1;

proc_ping:
 Preconditions: Identify_request_type = 1;
 Effects: Identify_request_type = 0;

Actions:
Input actions : /ping_req , delivery.
Output actions: /ping_resp ,
 header_inspect.
Internal action:

new_thread_allocation.

State Variables:
Process_Input :{0,1}
Prepare_resp: {0,1}

Transitions(per actions):

 /ping_request:

Effect: process_inp = 1;
delivery:

Effect: prepare_resp = 1;
/ping_resp:
Preconditions: prepare_resp=1;

Effects: prepare_resp=0;
/header_inspect:

Preconditions: process_inp=1;
Effects: process_inp:= 1;

If we have all scenarios of the system, then we can model TA of the overall system;

However according to algorithm UML2TA, for each scenario we can create a sub-
team; therefore if components HTTPTransponderHarness, HttpHeaderHarness and
PingHarness correspond to component automata C1, C2 and C3, respectively, then we
have:

() () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑∑= ∏

∈Jj
jJoutinpJJ IQSUB ,,,,, int δτ where { }3,2,1=J , ∏

∈

=
Jj

jJ QQ ,

{ }reqpinginp _/=∑ ,

{ }deliverypingprocinspHeaderresppingout ,_,_,_/=∑ ,

156 Mehran Sharafi, Fereidon Sham Aliee, Ali Movaghar

{ }threadnew _int =∑ ,

() () () () () (),,,,,,,,,,,,,,,,,,{ grwpiwwpiwIwwIwgrwwwwwQJ ′′′′′′′′′′=

 () () () () () ()},,,,,,,,,,,,,,,,, wIpowIpogrwpowwpogrIpiwIpi ′′′′′′′′′′

and briefly we have:

() ()() () ()(),,,,_/,,,,,,,_/,,,{ wIwinspHeaderwwpiwwpireqpingwwwJ ′′′′′′′′′′′=δ
() ()()},,,_/,,,..., wwwresppingwwpo ′′′′′′

4-2. Performance Evaluation and Architectural Changes

In Section 4-1, UML2TA was applied on Web-Service Software Architecture and
relevant component automata and subteam were generated. In this section, we repre-
sent results of applying UML2TA on a different version of previous architecture, and
show how an architect can choose more suitable architecture regarding overload con-
dition using our framework. Before that, we briefly explain overload and flash crowd
conditions in systems especially in web.

In web service provision, it is possible for the unexpected arrival of massive num-
ber of service requests in a short period; this situation is referred to as a flash crowd.
This is often beyond the control of the service provider and has the potential to se-
verely degrade service quality and, in the worst case, to deny service to all clients
completely. It is not reasonable to increase the system resources for short-time flash
crowd events. Therefore, if Web-Service Software could detect flash crowds at run-
time and change its own behavior proportional to occurred situation, then it can re-
solve this bottleneck. In the new architecture, a component has been added to the pre-
vious one, i.e. PingFactoryHarness; it controls response time of each request, detects
the flash crowd situation and directs PingHarness to change its behavior proportional
to occurred condition. At the end of this section, results of analysis of both architec-
tures are presented and it is shown how the new architecture is more effective than the
old one facing flash crowds. Thanks to Lindsey Bradford for giving us the initial per-
formance data of the system.

Fig.4. shows component diagram along with performance data and the new com-
ponent PingFactoryHarness. We have used notations defined in [15] by OMG Group.

In new architecture (sequence diagram of the new scenario has been ignored)
HttpTransponderHarness takes a snapshot of the system time just after the request text
has been received and just before that text is sent to the client. This snapshot data is
used to calculate an elapsed time for responding to the request later in sequence and
finally to detect abnormal conditions (e.g. flash crowd. The component PingHarness
is an updated component; it has the ability to change its behavior when it receives
relevant message from PingFactoryHarness. PingFactoryHarness receives the elapse
time from HttpTransponderHarness and decides if change is needed in the behavior of
PingHarness. PingHarness then receives the direction to change behavior.

Using Team Automata to Specify Software Architectures 157

Fig. 4. Extended Component Diagram of new Web-Service Software architecture.

In experiments performed on both architecture models, in an overload condition,
we observed that service times are not stable. It is because of sudden increase in re-
quests for the system resources. This situation does not follow the flow balancing
condition in usual queuing models [16], thus formulating an analytic approach cover-
ing the situation is problematic. Hence, we use simulation for this part of work and
the results of the simulation were used to calibrate analytic model introduced in Sec-
tion 3-2. We summarized the results of our hybrid method to Tables 2 and 3 for the
original and updated architecture, respectively.

Table 2. Performance data of the first architecture.

Response time(ms)
Average

number of
responses
per Sec. Max. Min. Avg.

Request per Sec.

2 373.9 284.8 285.9 2
0.5 7843.5 305.5 1906.3 3
0.2 7744.6 428.8 2877.8 5
0.0 1397.5 1011.2 1180.2 10

Table 3. Performance data of updated architecture.

Response time(ms) Average
number of
responses
per Sec. Max. Min. Avg.

Request per Sec.

2 270.8 222.2 223.2 2
3.1 241.2 222.3 229.9 3
3 10673 239.1 7478.1 5

3.4 10706 255.7 8683.4 10

158 Mehran Sharafi, Fereidon Sham Aliee, Ali Movaghar

The difference between the two architectures at the request rate of 10 per second is
interesting. At first glance, it seems that the first architecture response times are much
better than the second, however, comparing throughput between both architectures
indicates that first architecture delivered almost no responses at request rate higher
than 5. In contrast, the second architecture continued to deliver responses, despite the
worse response time.

5 Conclusion and Future Work

In this paper, a framework was introduced to formally specify and evaluate Software
Architectures. SA specification is initially described in UML2.0 which is the input
model for a transformation algorithm called UML2TA introduced within our frame-
work. UML2TA transforms SA descriptions in UML2.0 to a formal model called
Team Automata (TA). TA is inspired by Input/Output Automata and has been used in
the literature for modeling components interaction in groupware systems. It has also a
great generality and flexibility to specify different aspects of components interaction,
so it could be best fit to model dynamics of SA. By modeling software architectures
with a powerful model such as TA, we have suggested a rigorous basis to evaluate
(and also verify) functional and non-functional attributes of SA. Furthermore, we ex-
tended usual TA model to include performance aspects which could be involved in
UML2.0 diagrams. We also proposed a performance evaluation model over TA speci-
fications. Finally we applied our framework to the architecture of a web-service soft-
ware and showed how the framework could be used practically to anticipate perform-
ance aspects of an architecture.

In future work, we decide to firstly, promote our performance model to support a
wide variety of interactions such as asynchronous, anonymous in distributed envi-
ronments. Secondly, we are going to enhance our framework to include other non-
functional attributes e.g. security; this issue will facilitate simultaneous evaluation of
several attributes regarding their conflicting natures.

References

1. Ivers, P. Clements, D. Garlan, R Nord, B. Schmerl, J. R. Oviedo Silva. Documenting Com-
ponent and Connector Views with UML2.0. Technical report, CMU/SEI, TR-008 ESC-TR-
2004-008, 2004.

2. L. Bass, P. Clements, R. Kazman, Analyzing development qualities at the architectural
level, in: Software Architectures in Practice, SEI Series in Software Engineering, Addison-
Wesley, Reading, MA, 1998.

3. K. Cooper, L. Dai, Y. Deng, Performance modeling and analysis of software architectures:
An aspect-oriented UML based approach. Science of Computer Programming, Elsevier
,2005.

4. J.J.Li , J.R. Horgan , Applying formal description techniques to software architectural
design, The journal of Computer Communications, 23,1169-1178, 2000.

5. M. Shaw, D. Garlan, Software Architecture—Perspectives on an Emerging Discipline, Pren-
tice Hall, Englewood cliffs, NJ, 1996.

Using Team Automata to Specify Software Architectures 159

6. Maurice H. ter Beek, Gabriele Lenzini, Marinella Petrocchi, Team Automata for Security–
A Survey –,Electronic Notes in Theoretical Computer Science, 128 (2005) 105–119.

7. L. Egidi, M. Petrocchi, Modelling a Secure Agent with Team Automata, The Journal of
Electronic Notes in Theoretical Computer Science 142 (2006) 111–127.

8. M. Beek, C. Ellis, J. Kleijn, and G. Rozenberg. Synchronizations in Team Automata for
Groupware Systems. Computer Supported Cooperative Work—The Journal of Collaborative
Computing, 12(1):21–69, 2003.

9. N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. CWI Quarterly,
2(3):219–246, September 1989.

10.Luca de Alfaro and Thomas A. Henzinger. Interface Automata. In Volker Gruhn, editor,
Proceedings of the Joint 8th European Software Engeneering Conference and 9th ACM
SIGSOFT Symposium on the Foundation of Software Engeneering (ESEC/FSE-01), volume
26, 5 of Software Engineering Notes, pages 109–120. ACM Press, September 10–14 2001.

11.Luca de Alfaro and Thomas A. Henzinger. Interface-Based Design. In Proceedings of the
Marktoberdorf Summer School, Kluwer, Engineering Theories of Software Intensive Sys-
tems, 2004.

12.M. Sharafi, F Shams Aliee, A. Movaghar. A Review on Specifying Software Architectures
Using Extended Automata-Based Models, FSEN07, LNCS 4767,423-431, Springer-Verlag
Heidelberg, 2007.

13.C. Ellis. Team Automata for Groupware Systems. In Proceedings of the International ACM
SIGGROUP Conference on Supporting Group Work: The Integration Challenge
(GROUP’97), pages 415–424. ACM Press, New York, 1997.

14.Lubo¡s Brim, Ivana Cern , Pavl´ýna Va¡rekov, Barbora Zimmerova , ComponentInterac-
tion Automata as a Verification Oriented Component-Based System Specification, 2005.

15.Object Management Group. UML Profile, for Schedulability, Performance, and Time.
OMG document ptc/2002-03-02, http://www.omg.org/cgi-bin/doc?ptc/2002-03-02.

16.K. Kant and M.M. Sirinivasan. Introduction to Computer Performance Evaluation,
McGrawhill Inc. 1992

17.Lindsay William Bradford. Unanticipated Evolution of Web Service Provision Software
using Generative Object Communication. Final report of PhD thesis , Faculty of Information
Technology Queensland University of Technology, GPO Box 2434, Brisbane Old 4001,
Australia, 10 May, 2006.

18.A. Di Marco, P. Inverardi. Compositional Generation of Software Architecture Performance
QN Models Dipartimento di Informatica University of L’Aquila Via Vetoio 1, 67010 Cop-
pito, L’Aquila, Italy, 2004.

19.Federica Aquilani, Simonetta Balsamo , Paola Inverardi, Performance analysis at the soft-
ware architectural design level, Performance Evaluation 45, Elsevier, (2001) 147–178.

20.M.Sharafi, Developing a Framework to Formal Specification and Evaluation of Software
Architectures, Final Report of PhD Thesis, Faculty of Computer Engineering, Azad Univer-
sity of Tehran (Science and research branch of), August 2007.

160 Mehran Sharafi, Fereidon Sham Aliee, Ali Movaghar

