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Abstract. Using formal methods to specify software architectures make it pos-
sible to form a rigorous foundation to automatically verify different aspects of 
software architectures. In this paper we introduce a framework to formally 
specify and evaluate software architectures. The framework includes an algo-
rithm to transform software architecture described in UML to a powerful and 
formal model, called Team Automata. The framework also proposes a perform-
ance model over the obtained formal descriptions. This model is used to spec-
ify, evaluate and enhance the architecture of a Web-Service software under 
flash-crowd condition and the results of analyses and experiments are pre-
sented. 

Keywords: Software Architecture, Team Automata, Component Interaction, Perform-
ance. 

1   Introduction 

Software Architecture (SA in short) in early development phases represents models 
which contain basic structural components of software and their interactions; on the 
other hand, it contains both static structure and dynamics of the system behavior. De-
spite very high level of abstraction of architectural models, they comprise important 
design features which could be used to anticipate functional and non-functional at-
tributes (like performance, security, etc.) of software. In the past several years, many 
methods have been proposed to specify and evaluate SA and their primary goal is to 
facilitate architectural decision-makings; for example, in order to choose a suitable 
architecture among several architectural alternatives, one that best fits functional and 
non-functional requirements of relevant software [2, 3, 4, 5]. 

In this work, we introduce a formal framework to specify and evaluate software ar-
chitectures and try to overcome the usual limitations of common formal models. 
Within the framework, we have proposed an algorithm to transform SA behaviors de-
scribed in UML 2.0 to an automata-based model called Team Automata [8]. Along by 
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the formal descriptions, we proposed a performance model which is used to evaluate 
performance aspects of software architecture. Thus, our framework could be used by 
software architects to choose suitable architecture from among many alternatives 
and/or help them to make changes to architecture to fit desired performance require-
ments. This paper organized as follows: After Introduction, in Section 2 a comparison 
is made between some extended automata-based models, and their capabilities and 
weaknesses to specify components interaction. In this section also Team Automata, as 
a selected model, has been introduced and some definitions applied in our algorithm 
have been explained.  Section 3 introduces overall framework. In Section 4,the pro-
posed framework, have been applied on two alternative architectures of a web-service 
software as a case study, and the results have been presented. Section 5 refers to con-
clusions and future work. 

2   Using Automata-Based Models to Specify SA 

As we mentioned before, automata-based models have been used in the literature to 
specify dynamics of software architectures. However some of extended automata are 
more consistent for this issue because they have been designed for modeling the inter-
action among loosely coupled components in systems. For example, Input/Output 
Automata (IOA in short) [9] as a labeled transition system provide an appropriate 
model for discrete event systems consisting of concurrently operating components 
with different input, output and internal actions. IOA can be composed to form a 
higher-level I/O automaton thus forming a hierarchy of components of the system. In-
terface Automata (IA) [10, 11] are another extended automata model suitable for 
specifying component-based systems, which also support incremental design. Finally, 
Team Automata [8] is a complex model designed for modeling both the conceptual 
and architectural level of groupware systems. 

The common feature of these automata models is that "actions" are classified in 
'inputs', 'outputs' and 'internals', so that internal actions cannot participate in compo-
nents interaction. This feature has made them powerful to specify interaction among 
loosely coupled and cooperating components. It is clear that there are many similari-
ties between application domains of the mentioned models and the literature of Soft-
ware Architectures. Thus, applying these models in SA area must be greatly taken 
into consideration by software engineers. In [12] we also made a detailed comparison 
among these models and described why we have selected Team Automata for our 
framework.  

2-1. Team Automata  

Team Automata model was first introduced in [13] by C.A.Ellis. This complex model 
is primarily designed for modeling groupware systems with communicating teams but 
can also be used for modeling component-based systems [14]. In this section, some 
definitions of TA literature are briefly described. These definitions have been used in 
the algorithm proposed in this paper. Readers are referred to [8] for more complete 
and detailed definitions. 
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Let Ί Ν⊆ be a nonempty, possibly infinite, countable set of indices. Assume that  
Ί is given by Ί = {i1, i2 . . .}, with ij < ik  if  j < k. For a collection of sets Vi , with  i ∈  
Ί, we denote by ii VΓ∈Π   the Cartesian product consisting of the elements (vi1, vi2, . . .) 
with vi∈Vi  for each i ∈  Ί.  If  vi∈Vi  for each  i ∈  Ί, then Γ∈Π i vi denotes the ele-
ment (vi1, vi2, . . .) of ii VΓ∈Π . For each j ∈Ί and (vi1, vi2, . . .)∈  ii VΓ∈Π , we define 
projj ((vi1, vi2, . . .)) = vj. If ⊆≠ ζφ  Ί, then projζ ((vi1, vi2, . . .)) = jj vζ∈Π . 

For the sequel, we let S = {Ci | i∈Ί} with Ί Ν⊆ be a fixed nonempty, indexed set 
of component automata, in which each Ci is specified 
as ( )( )i

i
ioutiinpii IQ ,,,,, int,,, δΣΣΣ , with int,,, ioutiinpii ΣΣΣ=Σ ΥΥ as set of ac-

tions and outiinpiexti ,,, ΣΣ=Σ Υ  is the set of external actions of Ci. ii Σ=Σ Γ∈Υ is the 
set of actions of S; also we have ii QQ Γ∈Π=  as the state space of S. 

Component automata interact by synchronizing on common actions. Not all auto-
mata sharing an action have to participate in each synchronization on that action. This 
leads to the notion of a complete transition space consisting of all possible combina-
tions of identically labeled transitions. 

 
Definition 1. A transition QQqaq ×Σ×∈′),,( is a synchronization on a in S if for 

all i∈Ί, (proji(q), a, proji( q′ )) iδ∈ or proji(q) = proji( q′ ), and there exists i∈Ί such 
that  (proji(q), a, proji( q′ )) iδ∈ . 

For Σ∈a , )(SaΔ is the set of all synchronizations on a in S. Finally 

)()( SS aa Δ=Δ Σ∈Υ  is the set of all synchronizations of S.  
Given a set of component automata, different synchronizations can be chosen for 

the set of transitions of a composed automaton. Such an automaton has the Cartesian 
product of the states of the components as its set of states. To allow hierarchically 
constructed systems within the setup of team automata, a composed automaton also 
has internal, input, and output actions. It is assumed that internal actions are not ex-
ternally observable and thus not available for synchronizations. This is not imposed 
by a restriction on the synchronizations allowed, but rather by the syntactical re-
quirement that each internal action must belong to a unique component:  S is compos-
able if 

{ }
φ=ΣΣ

Γ∈
j

ij
i ΥΙ

\
int,

  for all i∈Ί. 

Moreover, within a team automaton each internal action can be executed from a 
global state whenever it can be executed by its component at the current local state. 
All this is formalized as follows. 

 
Definition 2. Let S be a composable set of component automata. Then a team 

automaton over S is a transition system ( )( )IQ outinp ,,,,, int δΣΣΣ=Τ , with set of 

states ii QQ Γ∈Π= and set of initial states ii II Γ∈Π= , actions ii Σ=Σ Γ∈Υ specified by 

int,int ii Σ=Σ Γ∈Υ , outiiout ,Σ=Σ Γ∈Υ , outinpiiinp ΣΣ=Σ Γ∈ \)( ,Υ  and transitions 

QQ ×Σ×⊆δ  such that )(SΔ⊆δ  and moreover )(Saa Δ=δ  for all intΣ∈a . 
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As definition 2 implies, one of the important and useful properties of TA compared 
to other models is that there is no unique Team automata composed over a set of 
component automata, but a whole range of Team Automata distinguishable only by 
their synchronizations can be composed over this set of component automata. This 
feature enables Team automata to be architecture and synchronization configurable, 
moreover, it makes possible to define a wide variety of protocols for the interaction 
among components of a system. 

Two other definitions effectively used in our algorithm are ''subteams" and "com-
municational actions" that we briefly introduce. Reference,[8] supports detailed defi-
nitions.  

 
Definition3. A pair Ci,Cj  with i,j Γ∈ , of component automata is communicating (in 

S) if there exists an ( )extjextia ,, ΣΣ∈ Υ  such that ( ) ( )outiinpjoutjinpia ,,,, ΣΣΣΣ∈ ΙΥΙ . 

Such an a is called a communicating action (in S). By comΣ we denote the set of 
all communicating actions (in S). 

 
Definition 4. Let ( )( )iioutinpii IQ Γ∈Γ∈ ΠΣΣΣΠ=Τ ,,,,, int δ  be a team automaton 

over the composable system S, and let Γ⊆J . Then the subteam of T determined by 
J is denoted by ( )TSUBJ  and is defined as  

( ) ( )( )jJjJjoutjinpjjJjJ IQTSUB ∈∈ ΠΣΣΣΠ= ,,,,, int,,, δ   , where: 

int,int, jJjJ Σ=Σ ∈Υ , outjJjoutJ ,, Σ=Σ ∈Υ , outJinpjJjinpJ ,,, \)( ΣΣ=Σ ∈Υ  

and for all jJjJa Σ=Σ∈ ∈Υ , ( ) ( ) { }( )JjCproj jaaJaJ ∈Δ= Ιδδ ]2[ . 
The transition relation of a subteam of T determined by some Γ⊆J  is obtained by 

restricting the transition relation of T to synchronizations among the components in 
{ }JjC j ∈ . Hence, in each transition of the subteam, at least one of the component 
automata is actively involved. This is formalized by the intersection of 
( ) ( )aJaJ proj δδ ]2[=  with { }( )JjC ja ∈Δ , for each action a, as in each transition in this 
complete transition space, at least one component from { }JjC j ∈  is active. 

3   Proposed Framework 

In this section, we describe an extension made to UML to become consistent, and 
could be used as our input model. Then we introduce an algorithm to transform ex-
tended UML models of software architecture to formal descriptions of Team Auto-
mata. We called this algorithm UML2TA. Finally, a performance model is described 
over TA, to evaluate performance aspects of software architecture. Fig.1. shows the 
input models and the overall steps of our framework. 
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3-1. UML2TA: An algorithm for transforming software architecture to Team 
Automata. 

UML diagrams are highly understandable and are widely used by software develop-
ers. New versions of UML (UML 2.X) have enhanced notations for specifying com-
ponent-based development and software architectures. [1, 15] 

Since our target model-TA, is highly formal, direct translation of UML to TA is 
problematic. Therefore, we first provided formal definitions of UML model elements 
to create a consistent input model. Static structure of software architecture is de-
scribed with UML 2 Component Diagram, while the interaction among components is 
described by Sequence Diagrams. Because of space limitation, we ignore describing 
details of the algorithm (UML2TA) and formal descriptions which we added to initial 
UML models. Readers are referred to [20] for a complete explanation of our frame-
work. However, in this paper a comprehensive example of applying our framework 
on a casestudy will be described.  

 
 

 Fig. 1. Overall steps in the framework to formally specify and evaluate software ar-
chitecture. 

Yes 

No 

 

UML 
Sequence
Diagrams

UML Component 
Diagram

 

Input: Structural 
and behavioral 
models of SA. 

Performance is 
acceptable?  

Choose the architecture 

Driving initial state model of each Component Automata, based on domain exper-
ti

Completing transition relation of each CA using UML2TA (phase 1) 

Creating a subteam for each sequence diagram using UML2TA (phase 2) 

Calculating performance of each subteam using the proposed performance model 

Update the architecture 
or try another one 
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3-2. A Performance Model over TA Specifications 

TA model achieved by UML2TA, is a formal foundation for software architecture 
which can be used for evaluating several attributes (For example in [6], [7] TA has 
been used for security analysis of groupware systems). In this section we introduce a 
model to evaluate performance of software architecture described by team automata. 
In this way, two features have been considered for evaluating performance:  

a) Performance specifications of components communication. In our performance 
model, we have considered a delay for each synchronization within a subteam. 

b) The granularity of the performance analysis. Performance can be analyzed as ei-
ther behavior-dependent or behavior-independent. For example, performance can be 
defined by processing time of the entire component or processing time of each service 
invocation in the component. In our model, performance is considered at the service 
level. Since service requests to a software component are assumed to be input actions 
to corresponding component automata, we assign a processing time to each input ac-
tion (These data are again obtained from existing similar systems). According to sug-
gestions a and b, we can extend Team automata models to include performance in-
formation as follows:  

For each Component Automata a processing-time function P and a delay function 
P’ is defined as follows: 

P= { ( ) inpiara ,, ∑∈ , r is the processing time corresponding to action a} 

P′= { ( ) id δθθ ∈, , d is the delay corresponding to transitionθ } 

We now model each Component Automata in the architecture with the extension of 
performance model as follows: 

),),,),,,(,(( int,,, iiiiioutiinpiii PPIQCP ′∑∑∑= δ  (1) 

Delays of transition within a component could be ignored (comparing with com-
munication delay between components, especially for distributed components). If we 
assume components interactions synchrony and sequential, then we can consider a 
whole subteam as a complex server [19] whose mean service time is equal to summa-
tion of service time of input actions (those which are synchronized) plus all synchro-
nization delay in the subteam. Thus, if 

kJi δθ ∈  be the ith synchronization in 

( )τ
kJSUB  and  comJk ,Σ  be the set of all communicating actions in ( )τ

kJSUB   

and comJ k
A ,Σ⊆ , { }maaaA ,...,, 21=  ,

kJm δ= ) be the set of communication ac-

tions which are synchronized within ( )τ
kJSUB , then we have: 

( ) ( )( )∑
=

+′=
m

i
ii

k

aPP
1

1 θ
μ

 (2) 
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, Where 
kμ

1  is mean service time of scenario k (corresponding to SDk) which has 

been modeled by subteam, ( )τ
kJSUB . 

 
Now suppose that software has k independent scenario whose probability of 

request by users is fk and suppose,   λ is the total input rate of requests to the system 
(When a request for a scenario arrives while a previous one has not been answered, 
the new request will be queued). The system response time corresponding to architec-
ture under evaluation is equal to R=1/(λ-μ); where μ  is total service rate and is calcu-
lated by the following formulas: 

∑
=

=
k

i i

if
1

1
μμ

 (3) 

4   An Application System Example 

We evaluated UML2TA method on a part of a web-service software architecture. In 
this example, we have a component diagram describing  major components and con-
nectors (Fig 2), and a sequence diagram (Fig 3) describing components interaction 
corresponding to a scenario where some end user requests the web content available 
from /ping URL (This system has been used as a case-study in [17] in a different 
scope). We use extension defined in [18] for sequence diagrams.  

 

 

Fig. 2. Component Diagram of a part of Web-Service Software 
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Fig. 3. Sequence Diagram specifying components interaction for '/ping' Scenario. 

According to UML2TA, first, we manually model each software component with a 
Component Automata from informal behavioral descriptions which has been briefly 
mentioned in Table 1. 

Table 1. CA models of Web-service Software components. 
Component Automata model of  PingHarness Component Automata model of HttpHead-

erHarness 
Component Automata model of 
HttpTransponderHarness: 

Actions: 
Input action: proc_ping; 
Output action: delivery; 
Internal action: None; 
 

State Variables: 
Generate_response:{0,1}; 
 

Transitions (per actions): 
 

Proc_ping: 
    Effects: generate_response = 1; 
 

delivery: 
Preconditions: generate_response = 1; 
 Effects: generate_response = 0; 

Actions: 
 
Input actions: header_inspect; 
Output actions: proc_ping; 
Internal action: none; 
 

State Variables: 
Identify_request_type : {0,1}; 
 

Transitions: (per actions)  
 
header_inspect: 
 Effects: Identify_request_type := 1; 
 
proc_ping: 
 Preconditions: Identify_request_type = 1; 
      Effects: Identify_request_type = 0; 

Actions: 
Input actions :   /ping_req , delivery. 
Output actions:  /ping_resp , 
 header_inspect. 
Internal action:  

new_thread_allocation. 
 

State Variables: 
Process_Input :{0,1}  
Prepare_resp: {0,1} 
 

Transitions(per actions): 
 
 /ping_request: 

Effect: process_inp  =   1; 
delivery:  

Effect: prepare_resp = 1; 
/ping_resp: 
Preconditions:  prepare_resp=1; 

Effects:  prepare_resp=0; 
/header_inspect: 

Preconditions: process_inp=1; 
Effects: process_inp:= 1; 

 
If we have all scenarios of the system, then we can model TA of the overall system; 

However according to algorithm UML2TA, for each scenario we can create a sub-
team; therefore if components HTTPTransponderHarness, HttpHeaderHarness and 
PingHarness correspond to component automata C1, C2 and C3, respectively, then we 
have: 

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑∑∑= ∏

∈Jj
jJoutinpJJ IQSUB ,,,,, int δτ where { }3,2,1=J , ∏

∈

=
Jj

jJ QQ  , 

{ }reqpinginp _/=∑  , 

{ }deliverypingprocinspHeaderresppingout ,_,_,_/=∑ , 
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{ }threadnew _int =∑ , 

( ) ( ) ( ) ( ) ( ) ( ),,,,,,,,,,,,,,,,,,{ grwpiwwpiwIwwIwgrwwwwwQJ ′′′′′′′′′′=  

 ( ) ( ) ( ) ( ) ( ) ( )},,,,,,,,,,,,,,,,, wIpowIpogrwpowwpogrIpiwIpi ′′′′′′′′′′  

and briefly we have: 
 

( ) ( )( ) ( ) ( )( ),,,,_/,,,,,,,_/,,,{ wIwinspHeaderwwpiwwpireqpingwwwJ ′′′′′′′′′′′=δ
( ) ( )( )},,,_/,,,..., wwwresppingwwpo ′′′′′′  

4-2. Performance Evaluation and Architectural Changes 

In Section 4-1, UML2TA was applied on Web-Service Software Architecture and 
relevant component automata and subteam were generated. In this section, we repre-
sent results of applying UML2TA on a different version of previous architecture, and 
show how an architect can choose more suitable architecture regarding overload con-
dition using our framework. Before that, we briefly explain overload and flash crowd 
conditions in systems especially in web. 

In web service provision, it is possible for the unexpected arrival of massive num-
ber of service requests in a short period; this situation is referred to as a flash crowd. 
This is often beyond the control of the service provider and has the potential to se-
verely degrade service quality and, in the worst case, to deny service to all clients 
completely. It is not reasonable to increase the system resources for short-time flash 
crowd events. Therefore, if Web-Service Software could detect flash crowds at run-
time and change its own behavior proportional to occurred situation, then it can re-
solve this bottleneck. In the new architecture, a component has been added to the pre-
vious one, i.e. PingFactoryHarness; it controls response time of each request, detects 
the flash crowd situation and directs PingHarness to change its behavior proportional 
to occurred condition. At the end of this section, results of analysis of both architec-
tures are presented and it is shown how the new architecture is more effective than the 
old one facing flash crowds. Thanks to Lindsey Bradford for giving us the initial per-
formance data of the system.  

Fig.4. shows component diagram along with performance data and the new com-
ponent PingFactoryHarness. We have used notations defined in [15] by OMG Group. 

In new architecture (sequence diagram of the new scenario has been ignored) 
HttpTransponderHarness takes a snapshot of the system time just after the request text 
has been received and just before that text is sent to the client. This snapshot data is 
used to calculate an elapsed time for responding to the request later in sequence and 
finally to detect abnormal conditions (e.g. flash crowd. The component PingHarness 
is an updated component; it has the ability to change its behavior when it receives 
relevant message from PingFactoryHarness. PingFactoryHarness receives the elapse 
time from HttpTransponderHarness and decides if change is needed in the behavior of 
PingHarness. PingHarness then receives the direction to change behavior.  
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Fig. 4. Extended Component Diagram of  new Web-Service Software architecture. 

In experiments performed on both architecture models, in an overload condition, 
we observed that service times are not stable. It is because of sudden increase in re-
quests for the system resources. This situation does not follow the flow balancing 
condition in usual queuing models [16], thus formulating an analytic approach cover-
ing the situation is problematic. Hence, we use simulation for this part of work and 
the results of the simulation were used to calibrate analytic model introduced in Sec-
tion 3-2. We summarized the results of our hybrid method to Tables 2 and 3 for the 
original and updated architecture, respectively. 

Table 2. Performance data of the first architecture. 

Response time(ms) 
Average 

number of 
responses 
per Sec. Max. Min. Avg. 

Request per Sec. 

2 373.9 284.8 285.9 2 
0.5 7843.5 305.5 1906.3 3 
0.2 7744.6 428.8 2877.8 5 
0.0 1397.5 1011.2 1180.2 10 

 

Table 3. Performance data of updated architecture. 

Response time(ms) Average 
number of 
responses 
per Sec. Max. Min. Avg. 

Request per Sec. 

2 270.8 222.2 223.2 2 
3.1 241.2 222.3 229.9 3 
3 10673 239.1 7478.1 5 

3.4 10706 255.7 8683.4 10 
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The difference between the two architectures at the request rate of 10 per second is 
interesting. At first glance, it seems that the first architecture response times are much 
better than the second, however, comparing throughput between both architectures 
indicates that first architecture delivered almost no responses at request rate higher 
than 5. In contrast, the second architecture continued to deliver responses, despite the 
worse response time. 

5   Conclusion and Future Work 

In this paper, a framework was introduced to formally specify and evaluate Software 
Architectures. SA specification is initially described in UML2.0 which is the input 
model for a transformation algorithm called UML2TA introduced within our frame-
work. UML2TA transforms SA descriptions in UML2.0 to a formal model called 
Team Automata (TA). TA is inspired by Input/Output Automata and has been used in 
the literature for modeling components interaction in groupware systems. It has also a 
great generality and flexibility to specify different aspects of components interaction, 
so it could be best fit to model dynamics of SA. By modeling software architectures 
with a powerful model such as TA, we have suggested a rigorous basis to evaluate 
(and also verify) functional and non-functional attributes of SA. Furthermore, we ex-
tended usual TA model to include performance aspects which could be involved in 
UML2.0 diagrams. We also proposed a performance evaluation model over TA speci-
fications. Finally we applied our framework to the architecture of a web-service soft-
ware and showed how the framework could be used practically to anticipate perform-
ance aspects of an architecture. 

In future work, we decide to firstly, promote our performance model to support a 
wide variety of interactions such as asynchronous, anonymous in distributed envi-
ronments. Secondly, we are going to enhance our framework to include other non-
functional attributes e.g. security; this issue will facilitate simultaneous evaluation of 
several attributes regarding their conflicting natures. 
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